How TiO2 crystallographic surfaces influence charge injection rates from a chemisorbed dye sensitiser.

نویسندگان

  • Natalia Martsinovich
  • Alessandro Troisi
چکیده

High-energy metal oxide surfaces are considered to be promising for applications involving surface-adsorbate electron transfer, such as photocatalysis and dye-sensitised solar cells. Here, we compare the efficiency of electron injection into different TiO(2) anatase surfaces. We model the adsorption of a carboxylic acid (formic acid) on anatase (101), (001), (100), (110) and (103) surfaces using density functional theory calculations, and calculate electron injection times from a model dye into these surfaces. We find that the different positions of the conduction band edge of these surfaces determine the rate of electron injection (which is faster for the surfaces with lower-lying conduction band, among them the most stable (101) surface). However, if the dye's injection energy is enforced to be at a fixed energy deep inside each surface's conduction band, then several anatase surfaces, such as the synthetically achievable (001) surface, show rates of injection comparable or faster than the (101) surface. Moreover, because of their higher-lying conduction bands, these minority surfaces are likely to offer higher open-circuit voltages in dye-sensitised solar cells. Therefore, synthetically accessible high-energy anatase surfaces, such as (001)-oriented nanostructures, may be promising candidates for use in dye-sensitised solar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ru(II)/Os(II)-polypyridyl complexes for coupling to TiO2 surfaces through acetylacetone functionality and studies on interfacial electron-transfer dynamics.

New Ru(ii)- and Os(ii)-polypyridyl complexes have been synthesized with pendant acetylacetone (acac) functionality for anchoring on nanoparticulate TiO2 surfaces with a goal of developing an alternate sensitizer that could be utilized for designing an efficient dye-sensitized solar cell (DSSC). Time-resolved transient absorption spectroscopic studies in the femtosecond time domain have been car...

متن کامل

EffEct of ElEctronic and nuclEar factors on thE dynamics of dyE-to-sEmiconductor ElEctron transfEr

Dye-to-semiconductor electron transfer is the initial step in many processes where light is used for the storage of information (e. g. color photography) or converted into electricity as in dye-sensitized solar cells. In the latter, interfacial charge injection occurs on a timescale spanning from tens of femtoseconds (10−15 s) to several picoseconds (10−12 s), with an efficiency approaching 100...

متن کامل

Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations.

Plausible mechanisms of the ultrafast electron injection and the significant dependence of the power conversion efficiency on the anchor group for the triphenylamine-based dye-sensitized TiO2 solar cells have been explored by the density functional calculations. Calculations show that the ultrafast charge recombination on the surface trap state of the dye-sensitized TiO2 system can be ascribed ...

متن کامل

Electron Injection Dynamics from Photoexcited Porphyrin Dyes into SnO2 and TiO2 Nanoparticles

The photoexcited electron injection dynamics of free-base and metallo-derivatives of tris(pentafluorophenyl)porphyrins bound to TiO2 and SnO2 nanoparticle surfaces have been investigated using timeresolved terahertz spectroscopy (TRTS). The metallo-derivatives include Zn(II), Cu(II), Ni(II), and Pd(II). For the TiO2−porphyrin assemblies, electron injection from the photoexcited dye to the semic...

متن کامل

First Demonstration of Surface Passivation in Dye-Sensitized TiO2 Solar Cells by an Additive in the Electrolyte

The composition of the electrolyte is known to greatly influence the performance of dye-sensitized solar cells. It has been speculated that some components of the electrolyte passivate the TiO2 surface against recombination; however, this has never been confirmed experimentally. We hereby present the first case of passivation of the TiO2 surface against recombination by an additive in the elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 38  شماره 

صفحات  -

تاریخ انتشار 2012